Discrete Solution of the Plateau Problem and Its Convergence
نویسندگان
چکیده
In this paper we define a discrete solution of the Plateau problem and we prove theorems for the convergence of the discrete solution when the contour satisfies a certain condition. A numerical example is given.
منابع مشابه
Some properties of band matrix and its application to the numerical solution one-dimensional Bratu's problem
A Class of new methods based on a septic non-polynomial spline function for the numerical solution one-dimensional Bratu's problem are presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Associated boundary f...
متن کاملA regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method
The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...
متن کاملAn Improved DPSO Algorithm for Cell Formation Problem
Cellular manufacturing system, an application of group technology, has been considered as an effective method to obtain productivity in a factory. For design of manufacturing cells, several mathematical models and various algorithms have been proposed in literature. In the present research, we propose an improved version of discrete particle swarm optimization (PSO) to solve manufacturing cell ...
متن کاملA Parameter Uniform Numerical Scheme for Singularly Perturbed Differential-difference Equations with Mixed Shifts
In this paper, we consider a second-order singularly perturbed differential-difference equations with mixed delay and advance parameters. At first, we approximate the model problem by an upwind finite difference scheme on a Shishkin mesh. We know that the upwind scheme is stable and its solution is oscillation free, but it gives lower order of accuracy. So, to increase the convergence, we propo...
متن کاملA New Optimal Solution Concept for Fuzzy Optimal Control Problems
In this paper, we propose the new concept of optimal solution for fuzzy variational problems based on the possibility and necessity measures. Inspired by the well–known embedding theorem, we can transform the fuzzy variational problem into a bi–objective variational problem. Then the optimal solutions of fuzzy variational problem can be obtained by solving its corresponding biobjective variatio...
متن کامل